Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III.
نویسندگان
چکیده
Two sets of studies have been reported on the electron transfer pathway of complex III in bovine heart submitochondrial particles (SMP). 1) In the presence of myxothiazol, MOA-stilbene, stigmatellin, or of antimycin added to SMP pretreated with ascorbate and KCN to reduce the high potential components (iron-sulfur protein (ISP) and cytochrome c(1)) of complex III, addition of succinate reduced heme b(H) followed by a slow and partial reduction of heme b(L). Similar results were obtained when SMP were treated only with KCN or NaN(3), reagents that inhibit cytochrome oxidase, not complex III. The average initial rate of b(H) reduction under these conditions was about 25-30% of the rate of b reduction by succinate in antimycin-treated SMP, where both b(H) and b(L) were concomitantly reduced. These results have been discussed in relation to the Q-cycle hypothesis and the effect of the redox state of ISP/c(1) on cytochrome b reduction by succinate. 2) Reverse electron transfer from ISP reduced with ascorbate plus phenazine methosulfate to cytochrome b was studied in SMP, ubiquinone (Q)-depleted SMP containing </=0.06 mol of Q/mol of complex III, and Q-replenished SMP. The results showed that Q was not required for electron transfer from ISP to b, a reaction that was inhibited by antimycin (also by myxothiazol or MOA-stilbene as reported elsewhere). It was also shown that antimycin did not inhibit electron transfer from b (b(H)) to Q, in clear contrast to the assumption of the Q-cycle hypothesis regarding the site of antimycin inhibition.
منابع مشابه
EVIDENCE FOR STOICHEIOMETRIC ASSOCIATION By C. IAN RAGAN* and CHRISTINE HERON
1. The NADH-ubiquinone oxidoreductase complex (Complex I) and the ubiquinolcytochrome c oxidoreductase complex (Complex III) combine in a 1: 1 molar ratio to give NADH-cytochrome c oxidoreductase (Complex I-Complex III). 2. Experiments C a the inhibition ofthe NADH-cytochrome c oxidoreductase activity of mixtures ofComplexes I and III by rotenone and antimycin indicate that electron transfer be...
متن کاملAtpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase).
Enzymes in the mitochondrial respiratory chain are involved in various physiological events in addition to their essential role in the production of ATP by oxidative phosphorylation. The use of specific and potent inhibitors of complex I (NADH-ubiquinone reductase) and complex III (ubiquinol-cytochrome c reductase), such as rotenone and antimycin, respectively, has allowed determination of the ...
متن کاملNN'-dicyclohexylcarbodi-imide-sensitivity of bovine heart mitochondrial NADH: ubiquinone oxidoreductase. Inhibition of activity and binding to subunits.
Dicyclohexylcarbodi-imide (DCCD) inhibition of NADH: ubiquinone oxidoreductase was studied in submitochondrial particles and in the isolated form, together with the binding of the reagent to the enzyme. DCCD inhibited the isolated enzyme in a time- and concentration-dependent manner. Over the concentration range studied, a maximum inhibition of 85% was attained within 60 min. The time course fo...
متن کاملStructure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III.
Mitochondria are central to the efficient provision of energy for eukaryotic cells. The oxidative-phosphorylation system of mitochondria consists of a series of five major membrane complexes: NADH-ubiquinone oxidoreductase (commonly known as complex I), succinate-ubiquinone oxidoreductase (complex II), ubiquinol-cytochrome c oxidoreductase (cytochrome bc1 complex or complex III), cytochrome c-O...
متن کاملSuperoxide Is Produced by the Reduced Flavin in Mitochondrial Complex I
NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a contributor to cellular oxidative stress. In isolated complex I the reduced flavin is known to react with molecular oxygen to form predominantly superoxide, but studies using intact mitochondria contend that superoxide may result from a semiquinone species that responds to the proton-mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 22 شماره
صفحات -
تاریخ انتشار 2001